文章来源:SD科技制造 计算机视觉life”,选择“星标” 快速获得最新干货 本文转载自自动驾驶专栏 今晚直播全方面介绍《视觉惯性SLAM:理论与源码解析》新书发布交流会及学习挑战赛,大家小手点击一下预约,零距离互动,有抽奖哦~ 以下是正文
论文链接:https://ieeexplore.ieee.org/document/9561459 高度精确且鲁棒的定位能力对于城市场景中自动驾驶车辆(AVs)至关重要。传统的基于视觉的方法由于光照、天气、视角和外观变化而导致定位丢失。在本文中,我们提出一种新型的视觉语义定位算法,它基于高精度地图和具有紧凑表达的语义特征。语义特征广泛出现在城市道路,并且对于光照、天气、视角和外观变化具有鲁棒性。重复的结构、漏检和误检使得数据关联(DA)具有高度奇异性。为此,本文提出了一种考虑局部结构一致性、全局模式一致性和时序一致性的鲁棒DA方法。此外,本文引入一种滑动窗口因子图优化框架,以融合关联结果和里程计测量信息,而不需要地图特征的高精度绝对高度信息。 我们在仿真和真实城市道路上评估所提出的定位框架。实验结果表明,所提出方法能够实现高度精确定位,其平均纵向误差为0.43m,平均横向误差为0.12m,平均偏航角误差为0.11°。 介绍 近年来,AVs已经受到工业界和学术界的广泛关注。高精度定位对于AVs而言是一项关键技术,因为决策、规划和控制等各种模块都严重依赖于定位结果。为了实现精确定位,AVs装载了各种传感器,例如GNSS、相机、激光雷达、IMU、车轮编码器等。由于激光雷达的价格昂贵,因此低成本相机和IMU更适用于商用级AVs定位。 城市场景中具有各种复杂的道路条件,例如城市峡谷、隧道、高架等,这使得AVs定位更具有挑战性。为了在该场景中实现鲁棒定位,涌现了各种方法,例如基于GNSS的方法、基于视觉的方法、基于视觉-惯性的方法、基于激光雷达的方法。基于GNSS的方法能够在开阔场景中实现厘米级精度,但是它在遮挡和多路径条件下不够可靠。所以,提出了融合GNSS和IMU或者里程计的方法,以解决GNSS的问题,但是由于里程计漂移,它们在长期缺少全局定位信息的场景中仍然会失效。为了解决漂移的问题,广泛应用基于先验地图的方法。最常用的地图为点云地图,它能够通过ICP或者NDT方法实现厘米级定位,但是点云地图的存储对于商用级AVs而言是一个巨大的挑战。传统的视觉特征地图也已经被尝试用于定位,但是由于光照、天气、视角和外观变化,它们受到跟踪丢失的影响。 为了解决这个问题,我们提取视觉语义特征,并且基于高精度地图进行定位。与传统视觉特征相比,语义特征广泛出现在城市道路上,并且对于天气、光照、视角和外观变化是长期稳定且鲁棒的。由于语义特征的奇异性、误检和漏检,DA是最大的挑战之一。因此,我们提出一种具有一致DA的精确且鲁棒的视觉语义定位系统。本文的主要贡献如下: 文章来源:SD科技制造 转载声明: 本文为转载发布,仅代表原作者或原平台观点或立场,不代表我方观点。亚太菁英传媒及旗下澳洲门户网(ozportal.tv)仅提供信息发布平台,文章或有适当删改。对转载有异议和删稿要求的原著方,可联络info@ozportal.tv。 |