文章来源:搜狐无人机 来源:机器之心 作者:罗志鹏 近日,在 ICCV 2019 Workshop 举办的 Vision Meets Drone: A Challenge(简称:VisDrone2019) 挑战赛公布了最终结果,来自深兰科技北京 AI 研发中心的 DeepBlueAI 团队斩获了「视频目标检测」和「多目标追踪」两项冠军。我们可以通过这篇文章来了解一下 DeepBlueAI 团队的解决方案。 The VisDrone2019 挑战赛 如今,配备摄像头的无人机或通用无人机已经广泛地应用在农业、航空摄影、快速交付、监视等多个领域。 VisDrone2019 数据集由天津大学机器学习与数据挖掘实验室 AISKYEYE 队伍负责收集,全部基准数据集由无人机捕获,包括 288 个视频片段,总共包括 261908 帧和 10209 个静态图像。 这些帧由 260 多万个常用目标(如行人、汽车、自行车和三轮车)的手动标注框组成。为了让参赛队伍能够更有效地利用数据,数据集还提供了场景可见性、对象类别和遮挡等重要属性。 本届挑战赛包含四个任务:
这次比赛的难点主要有: 1. 大量的检测物体 与常规检测数据集不同的是,每张图片包含上百个待检测物体,数据集总共含有 260 万个标注框,如果使用占用显存较大的模型,可能会出现资源不够的情况。同时面对一些重叠的结果时,我们需要选择合适的阈值去过滤出最好的结果。 2. 部分目标过小 因为数据集是由无人机拍摄而来,行人和远景的物体的标注框就非常小,这对模型产生 anchor 的能力形成了一定的挑战,高分辨率的空间信息和高质量的 proposal 在本次赛题中就显得尤为重要。 3. 不同的数据分布 常用的数据集如:COCO 数据集、OBJ365 都是广泛应用的数据集,所以大家经常用它们的预训练来 fine-tune 其他数据集。而这一次的数据集由于拍摄角度问题,预训练所带来的效果不如预期。 文章来源:搜狐无人机 转载声明: 本文为转载发布,仅代表原作者或原平台观点或立场,不代表我方观点。亚太菁英传媒及旗下澳洲门户网(ozportal.tv)仅提供信息发布平台,文章或有适当删改。对转载有异议和删稿要求的原著方,可联络info@ozportal.tv。 |